11 research outputs found

    E2GK : Evidential evolving Gustafsson-Kessel algorithm for data streams partitioning using belief functions.

    No full text
    International audienceA new online clustering method, called E2GK (Evidential Evolving Gustafson-Kessel) is introduced in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and e cient algorithms: Evidantial c- Means (ECM) and Evolving Gustafson-Kessel (EGK). E2GK uses the concept of credal partition of ECM and adapts EGK, o ering a better interpretation of the data structure. Experiments with synthetic data sets show good performances of the proposed algorithm compared to the original online procedure

    An Evidential Evolving Prognostic Approach and its Application to PRONOSTIA's Data Streams

    No full text
    International audienceThe research activity in the PHM community is in full bloom and many efforts are being made to develop more realistic and reliable methodologies. However, there still exist very few real-world applications due to the complexity of the systems of interest. Nonlinear dynamical systems identification and behavior prediction are difficult problems encountered in prognosis. The difficulty in switching from theory to practice can partially be explained by the existence of different kinds of uncertainty at each step of the implementation that must be taken into account with the appropriate tools. In this paper, we propose an evolving multi-modeling approach for the detection, the adaptation and the combination of local models in order to analyze complex systems behavior. It relies on belief functions in order to take into consideration the uncertainty related to the available data describing the system as well as the uncertainty generated by the nonlinearity of the system. The information of doubt explicitly represented in the belief functions framework is exploited to properly segment the data and take into account the uncertainty related to the transitions between the operating regions. The proposed algorithm is validated on a data provided by PRONOSTIA platform

    Evidential Evolving Gustafson-Kessel Algorithm For Online Data Streams Partitioning Using Belief Function Theory.

    Get PDF
    International audienceA new online clustering method called E2GK (Evidential Evolving Gustafson-Kessel) is introduced. This partitional clustering algorithm is based on the concept of credal partition defined in the theoretical framework of belief functions. A credal partition is derived online by applying an algorithm resulting from the adaptation of the Evolving Gustafson-Kessel (EGK) algorithm. Online partitioning of data streams is then possible with a meaningful interpretation of the data structure. A comparative study with the original online procedure shows that E2GK outperforms EGK on different entry data sets. To show the performance of E2GK, several experiments have been conducted on synthetic data sets as well as on data collected from a real application problem. A study of parameters' sensitivity is also carried out and solutions are proposed to limit complexity issues

    Time-Sliced temporal evidential networks : the case of evidential HMM with application to dynamical system analysis.

    No full text
    International audienceDiagnostics and prognostics of health states are important activities in the maintenance process strategy of dynamical systems. Many approaches have been developed for this purpose and we particularly focus on data-driven methods which are increasingly applied due to the availability of various cheap sensors. Most data-driven methods proposed in the literature rely on probability density estimation. However, when the training data are limited, the estimated parameters are no longer reliable. This is particularly true for data in faulty states which are generally expensive and difficult to obtain. In order to solve this problem, we propose to use the theory of belief functions as described by Dempster, Shafer (Theory of Evidence) and Smets (Transferable Belief Model). A few methods based on belief functions have been proposed for diagnostics and prognostics of dynamical systems. Among these methods, Evidential Hidden Markov Models (EvHMM) seems promising and extends usual HMM to belief functions. Inference tools in EvHMM have already been developed, but parameter training has not fully been considered until now or only with strong assumptions. In this paper, we propose to complete the generalization of HMM to belief functions with a method for automatic parameter training. The generalization of this training procedure to more general Time-Sliced Temporal Evidential Network (TSTEN) is discussed paving the way for a further generalization of Dynamic Bayesian Network to belief functions with potential applications to diagnostics and prognostics. An application to time series classification is proposed

    E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications.

    No full text
    International audienceNonlinear dynamical systems identification and behavior prediction are di cult problems encountered in many areas of industrial applications such as fault diagnosis and prognosis. In practice, the analytical description of a nonlinear system directly from observed data is a very challenging task because of the the too large number of the related parameters to be estimated. As a solution, multi-modeling approaches have lately been applied and consist in dividing the operating range of the system under study into di erent operating regions easier to describe by simpler functions to be combined. In order to take into consideration the uncertainty related to the available data as well as the uncertainty resulting from the nonlinearity of the system, evidence theory is of particular interest, because it permits the explicit modeling of doubt and ignorance. In the context of multi-modeling, information of doubt may be exploited to properly segment the data and take into account the uncertainty in the transitions between the operating regions. Recently, the Evidential Evolving Gustafson-Kessel algorithm (E2GK) has been proposed to ensure an online partitioning of the data into clusters that correspond to operating regions. Based on E2GK, a multi-modeling approach called E2GKpro is introduced in this paper, which dynamically performs the estimation of the local models by upgrading and modifying their parameters while data arrive. The proposed algorithm is tested on several datasets and compared to existing approaches. The results show that the use of virtual centroids in E2GKpro account for its robustness to noise and generating less operating regions while ensuring precise predictions

    Using a multi-criteria decision aid methodology to implement sustainable development principles within an Organization

    Get PDF
    International audienceThe implementation of Sustainable Development (SD) within an Organization is a difficult task. This is due to the fact that it is difficult to deal with conflicting and incommensurable aspects such as environmental, economic and social dimensions. In this paper we have used a Multi-Criteria Decision Aid (MCDA) methodology to cope with these difficulties. MCDA methodology offers the opportunity to avoid monetary valuation of the different dimensions of the SD. These dimensions are not substitutable for one another and all have a role to play. There is an abundance of possible aggregation procedures in MCDA methodology. In this paper we have proposed an innovative method to choose a suitable aggregation procedure for SD problems. Real life case studies of the implementation of an outranking approach (i.e., ELECTRE) and of a mono-criterion synthesis approach (i.e., MAUT approaches based on the Choquet integral) were done to respectively rank 22 SD strategic actions within an expertise Institute and rank 20 practical operational actions to control energy consumption of the Institute's buildings

    Evidential Evolving Gustafson-Kessel Algortithm (E2GK) and its application to PRONOSTIA's Data Streams Partitioning.

    No full text
    International audienceCondition-based maintenance (CBM) appears to be a key element in modern maintenance practice. Research in diagnosis and prognosis, two important aspects of a CBM program, is growing rapidly and many studies are conducted in research laboratories to develop models, algorithms and technologies for data processing. In this context, we present a new evolving clustering algorithm developed for prognostics perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is an online clustering method in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). To validate and illustrate the results of E2GK, we use a dataset provided by an original platform called PRONOSTIA dedicated to prognostics applications

    Evidential Evolving Gustafson-Kessel Algorithm (E2GK) and its application to PRONOSTIA's Data Streams Partitioning.

    No full text
    International audienceCondition-based maintenance (CBM) appears to be a key element in modern maintenance practice. Research in diagnosis and prognosis, two important aspects of a CBM program, is growing rapidly and many studies are conducted in research laboratories to develop models, algorithms and technologies for data processing. In this context, we present a new evolving clustering algorithm developed for prognostics perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is an online clustering method in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). To validate and illustrate the results of E2GK, we use a dataset provided by an original platform called PRONOSTIA dedicated to prognostics applications

    E2GK-pro: An Evidential Evolving Multimodeling Approach for Systems Behavior Prediction

    No full text
    Nonlinear dynamic systems identification and nonlinear dynamic behavior prediction are important tasks in several areas of industrial applications. Multiple works proposed multimodel-based approaches to model nonlinear systems. Multimodeling permits to blend different model types together to form hybrid models. It advocates the use of existing, well known model types within the same model structure. Recently, a multimodeling strategy based on belief functions theory was developed based on a fuzzy rule based system. We propose a different approach of this latter taking advantage of new efficient evidential clustering algorithms for the determination of the local models and the assessment of the global model. In particular, the algorithm called E2GK-pro relies on an online procedure based on the Evidential Evolving Gustafsson-Kessel (E2GK) algorithm that ensures an evolving partitioning of the data into clusters corresponding to operating regions of the global system. Thus the estimation of the local models is dynamically performed by upgrading and modifying their parameters while the data arrive. Each local model is weighted by a belief mass provided by E2GK, and the global model (multimodel) is a combination of all the local models. 1
    corecore